Multilingual Language Models Linguistic Information in Large Language Models

Marion Di Marco marion.dimarco@tum.de

July 2, 2024

- Large Language Models: state-of-the-art performance on many tasks
- Typically trained without explicit linguistic information, just large quantities of (multilingual) text
- Multilingual models: jointly trained on multiple languages, typically no explicit marking of the languages
- \Rightarrow Zero-shot cross lingual transfer in multilingual models
- \Rightarrow Multilingual capabilities in (English-centric) Large Language Models
- \Rightarrow Low-resource languages in LLMs

mBERT: Cross-Lingual Transfer

- Multilingual Capabilities of Large-Scale LMs
- Monolingual or Multilingual LLMs?
- Low-Resource and Endangered Languages in LLMs
- Summary
- References

Multilingual Models and Cross-Lingual transfer

- Multilingual models have been shown to work surprisingly well for zero-shot cross-lingual transfer
 - Train a model on multiple languages
 - Fine-tune the model on a task in one language (typically English)
 - Apply the model to solve the task in another language multilingual pre-training → generalization to other languages
- Bridge the gap to lower-resourced languages
- mBERT: language model pre-trained from monolingual corpora in 104 languages
- Shared word piece vocabulary
- No direct cross-lingual supervision

- How multilingual is Multilingual BERT? Pires et al. (2019)
- Evidence that LMs such as BERT encode e.g. syntactic and named entity information
- To what degree generalize these representations across languages?
- Zero-shot cross-lingual model transfer with mBERT
 - supervised task-specific fine-tuning for language A
 - evaluate that task in language B
 - $\rightarrow\,$ analyze generalization of information across languages

Experiments and Results

• Named entity recognition

Fine-tuning \ Eval	EN	DE	NL	ES
EN	90.70	69.74	77.36	73.59
DE	73.83	82.00	76.25	70.03
NL	65.46	65.68	89.86	72.10
ES	65.38	59.40	64.39	87.18

Table 1: NER F1 results on the CoNLL data.

• Part-of-speech tagging

_

Fine-tuning \ Eval	EN	DE	ES	IT
EN	96.82	89.40	85.91	91.60
DE	83.99	93.99	86.32	88.39
ES	81.64	88.87	96.71	93.71
IT	86.79	87.82	91.28	98.11

Table 2: POS accuracy on a subset of UD languages.

Tables from Pires et al. (2019)

- Does transferability depend on lexical overlap (→ vocabulary memorization)?
- Transfer to languages written in different scripts (no overlap)?
- Compute overlap of word pieces in the training and evaluation data
- Compare NER F1 scores for zero-shot transfer between every language pair of 16 languages for EN-BERT and M-BERT
 - EN-BERT: performance depends directly on word piece overlap
 - M-BERT: good performance even for lower overlap
 - $\rightarrow\,$ representational capacity beyond simple vocabulary memorization

Effect of Vocabulary Overlap

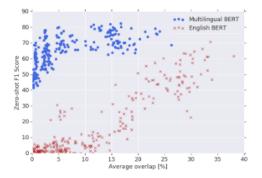


Figure 1: Zero-shot NER F1 score versus entity word piece overlap among 16 languages. While performance using EN-BERT depends directly on word piece overlap, M-BERT's performance is largely independent of overlap, indicating that it learns multilingual representations deeper than simple vocabulary memorization.

Figure from Pires et al. (2019)

Generalization Across Scripts: POS tagging

- M-BERThas a surprising ability to transfer between languages written in different scripts (i.e. effectively zero lexical overlap)
- despite training on separate monolingual corpora without multilingual objective

	HI	UR		EN	BG	JA
HI	97.1	85.9	EN	96.8	87.1	49.4
UR	91.1	93.8	BG	82.2	98.9	51.6
			JA	57.4	67.2	96.5

Table 4: POS accuracy on the UD test set for languages with different scripts. Row=fine-tuning, column=eval.

- High results between Urdu (Arabic script) and Hindi (Devanagari script)
- Less accurate for other pairs (e.g. EN JA) \rightarrow topological similarities

Table from Pires et al. (2019)

Effect of Language Similarity

• Comparison based on WALS features relevant to grammatical ordering

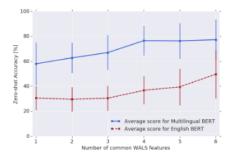


Figure 2: Zero-shot POS accuracy versus number of common WALS features. Due to their scarcity, we exclude pairs with no common features.

 Performance improves with language similarity → better mapping of linguistic structures for more similar languages

Figure from Pires et al. (2019)

Generalizing Across Typological Similarities

- POS accuracies for transfer between languages grouped according to two typological features:
 - subject/object/verb order
 - adjective/noun order
- Results reported include only zero-shot transfer

	SVO	SOV		AN	NA
SVO	81.55	66.52	AN	73.29	70.94
SOV	63.98	64.22	NA	75.10	79.64
(a) Subj./verb/obj. order.			(b) Adj	ective/no	un order.

Table 5: Macro-average POS accuracies when transferring between SVO/SOV languages or AN/NA languages. Row = fine-tuning, column = evaluation.

- Best performance between languages sharing word order features,
 - ability to map learned structures onto new vocabularies,
 - less able to transfer structures to different word orders

Table from Pires et al. (2019)

Cross-Lingual Abilities of mBERT

- Hypothesis: Pires et al. (2019), Cao et al. (2020), Wu and Dredze (2019) cross-lingual abilities of mBERT are based on a combination of
 - (i) shared vocabulary items that act as anchor points;
 - (ii) joint training across multiple languages that spreads this effect; which ultimately yields
 - (iii) deep cross-lingual representations that generalize across languages and tasks
- Artetxe et al. (2020) take a closer look at this hypothesis : propose an alternative approach:

cross-lingual transfer of monolingual representations

Cross-Lingual Transferability of Monolingual Representations

• On the Cross-lingual Transferability of Monolingual Representations

Artetxe et al. (2020)

- Train a transformer-based masked LM on one language, then transfer it to a new language
- This approach does not rely on a shared vocabulary or joint training
- Competitive with multilingual BERT on standard cross-lingual classification benchmarks and on a new Cross-lingual Question Answering Dataset (XQuAD).

Cross-Lingual Transferability of Monolingual Representations

- L1: monolingual corpus and task supervision
- L2: only monolingual corpus
- Separate subword vocabulary for each language,
- (1) Pre-train monolingual BERT in L1 (masked language modeling and next sentence prediction)
- (2) Transfer model to a new language: learn new token embeddings on language L2 while freezing the transformer body
- (3) Fine-tune the transformer for a task using labeled data in L1, while keeping the L1 token embeddings frozen
- (4) Zero-shot transfer the resulting model to L2 by swapping the L1 token embeddings with the L2 embeddings

Models and Settings

- Joint multilingual models (JOINTMULTI): multilingual BERT model trained jointly on 15 languages
- joint pairwise bilingual models (JOINTPAIR): multilingual BERT model trained jointly on two languages (English and another language)
- Cross-lingual transfer of monolingual models (MONOTRANS): as described above; English as L1
- Vocabulary:
 - JOINTMULTI:
 - models with a vocabulary of 32k, 64k, 100k, and 200k subwords
 - JOINTPAIR:

model with a joint vocabulary of 32k (learned for each language pair); model with a disjoint vocabulary of 32k subwords per language (learned on the monolingual corpus, same vocab as MONOTRANS)

• 14 languages (fr, es, de, el, bg, ru, tr, ar, vi, th, zh, hi, sw, ur)

- NLI: given two sentences (a premise and a hypothesis), decide whether there is an entailment, contradiction, or neutral relationship
- JOINTMULTI is comparable with the literature
- Vocabulary: JOINTMULTI variants with larger vocabulary are better
- More languages do not improve performance. JOINTPAIR models with a joint vocabulary perform comparably with JOINTMULTI
- A shared subword vocabulary is not necessary for joint multilingual pre-training. JOINTPAIR models with a disjoint vocabulary for each language perform better
- MONOTRANS is competitive with joint learning. The best model variants are slightly worse than JOINTPAIR

Experiments – Summary

• Further experiments (document classification, paraphrase identification, question answering) → similar results

• Joint multilingual training

- sharing subwords across languages is not necessary
- no clear improvements by scaling to a large number of languages
- effective vocabulary size per language is an important factor: joint vocabulary → only a subset is effectively shared
- JOINTPAIR models with disjoint vocab generally perform best

• Transfer of monolingual representations

- MONOTRANS is competitive even in challenging scenarios
- suggests that multilingual pre-training is not essential for cross-lingual generalization
- Probing the representations of MONOTRANS: monolingual models learn some semantic abstractions that are generalizable to other languages

mBERT: Cross-Lingual Transfer

Multilingual Capabilities of Large-Scale LMs

Monolingual or Multilingual LLMs?

Low-Resource and Endangered Languages in LLMs

Summary

References

Large Language Models – Languages

gpt-3 / dataset_statistics / languages_by_word_count.csv 🖓

1	language	number of words	percentage of total words
2	en	181014683608	92.64708%
3	fr	3553061536	1.81853%
4	de	2870869396	1.46937%
5	es	1510070974	0.77289%
6	it	1187784217	0.60793%
7	pt	1025413869	0.52483%
8	nl	669055061	0.34244%
9	ru	368157074	0.18843%
10	ro	308182352	0.15773%
11	pl	303812362	0.15550%
12	fi	221644679	0.11344%
13	da	221551540	0.11339%
14	sv	220920577	0.11307%
15	ja	217047918	0.11109%

https://github.com/openai/gpt-3/blob/master/dataset_statistics/languages_by_word_count.csv

Large Language Models – Languages

• Many Large Language models are English-centric

Table 1 Top five languages included in GPT-3 training data compared against other measures of the top five global languages, from 1st most common and widely used.

	1 st	2 nd	3rd	4 th	5 th
GPT-3 training data (2019) [35]	English (93%)	French (1.8%),	German (1.5%)	Spanish (0.8%)	Italian (0.6%)
Languages represented on the Internet (2021) [36]	English (44.9%)	Russian (7.2%)	German (5.9%)	Chinese languages (4.6%)	Japanese (4.5%)
First- languages spoken (2019) [37]	Mandarin Chinese (12%)	Spanish (6%),	English (5%),	Hindi (4.4%),	Bengali (4%).
Most spoken language (2021)[37]	English (1348M)	Mandarin Chinese (1120M)	Hindi (600M)	Spanish (543M)	Standard Arabic (274M)

- On the Multilingual Capabilities of Very Large-Scale English Language Models Armengol-Estapé et al. (2022)
- LLMs are predominantly English → multilingual capabilities?
- Large majority (93%) of GPT-3's training data is English
- Comparatively small portions of other languages
- Is this enough for good LMs in those languages?

- Previous work: focus mostly on capabilities for tasks in English
- MT with GPT-3: good for translating into English
- Evaluate GPT-3 on 3 generative tasks
 - extractive question-answering,
 - text summarization,
 - natural language generation
 - 5 languages: German, Spanish, Russian, Turkish, Catalan
 - different model sizes

Zero-Shot Multilingual Question Answering

- Question Answering: produce an answer given a context and a question
- XQuAD: benchmark dataset for evaluating Artetxe et al., (2020) crosslingual QA performance
 - subset of SQuAD translated into ten languages
 - same question+answer pairs for all languages
 - \rightarrow no bias wrt. difficulty
- Example

This is a Question-Answering system in English. Context: The Panthers defense gave up just 308 points [...] Question: How many points did the Panthers defense surrender? Answer: 308

• Prompts are formulated in the evaluated language

Rajpurkar et al., (2016)

Zero-Shot Multilingual Question Answering

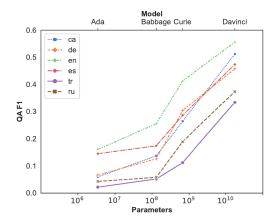


Figure 1: Automatic metrics results (F1) for the question-answering task

Zero-Shot Multilingual Text Summarization

- Producing a shorter version of a text while preserving relevant information
- MLSUM: a multilingual summarization dataset Scialom et al. (2020) obtained from online newspapers
 - multilingual content is not parallel
 - Catalan: CaSum dataset (manually revised)
- Filtering
 - length: text + summary + instruction exceeds context window (2048 tokens)
 - quality: summaries with a ROUGE score below 0.1
 - Russian: discarded entirely (\rightarrow English-centric tokenization)
- Prompt format:

[... text ...] TL;DR

- Generation tasks are difficult to evaluate
- Words in the summary \leftrightarrow words in the reference
- Length: how long is a good summary?
 - in supervised learning: similar length as in examples
 - (\rightarrow zero-shot setting in the experiment)
 - in the used data set: most summaries are not longer than 3 sentences
- ROUGE: N-gram co-occurrences
- Manual evaluation for EN and CA (ranking)

Zero-Shot Multilingual Text Summarization: Evaluation

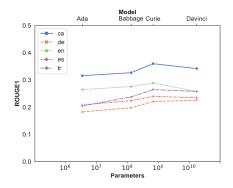


Figure 2: Automatic metrics results (ROUGE-1) for the Text Summarization task

• Davinci: random manual inspection more concise summaries, more creative in terms of the lexical choices

Zero-Shot Multilingual Text Summarization: Evaluation

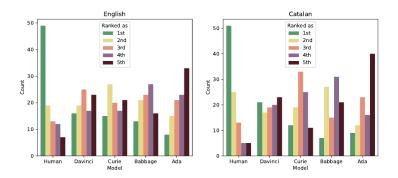


Figure 3: Human ranking results for the Text Summarization Evaluation task.

- Turing test: was a sentence produced by a human or by AI?
- High cost of human evaluation: only Catalan and English
- Data set: randomly sample 20 news articles and use the headline as prompt
- Generate text in the same language as the headline
- Select 60 sentences each from the generated articles and the original articles
- 3 native speakers decide: human or AI generated \Rightarrow majority vote

Zero-Shot Multilingual Text Summarization: Evaluation

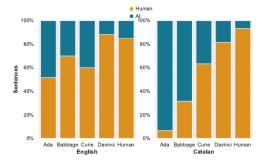


Figure 4: Human evaluation results for the Text Generation task

• Inter-annotator agreement: Fleiss $\kappa = 0.401$ for Catalan and 0.290 for English

Multilingual Capabilities of Large-Scale LMs: Discussion

- Remarkable zero-shot generative capabilities in languages that appear in tiny proportions in the training corpus
 - Russian: non-Latin alphabet
 - Turkish: no typological affiliation
 - Catalan: moderately under-resourced
- Scaling: transfer learning between English and the other languages in zero-shot settings scales with model size
- Tokenization: English-based segmentation
 - token/word ratio as a predictor for GPT-3 performance
 - Russian: excluded from summary task due to segmentation

 \Rightarrow GPT-3: almost as useful for many languages as it is for English

- mBERT: Cross-Lingual Transfer
- Multilingual Capabilities of Large-Scale LMs
- Monolingual or Multilingual LLMs?
- Low-Resource and Endangered Languages in LLMs
- Summary
- References

- Language Contamination Helps Explain the Cross-lingual Capabilities of English Pretrained Models Blevins et al. (2022)
- Many LLMs are presented as *English* models, but have been found to transfer well to other languages
- Common English pre-training corpora contain significant amounts of non-English text

Even a small percentage \rightarrow hundreds of millions of foreign language tokens in large-scale datasets

• Small percentages of non-English data facilitate cross-lingual transfer with the performance strongly correlated to the amount of in-language data

Non-English Data

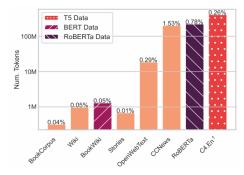


Figure 1: Estimated non-English data in English pretraining corpora (token count and total percentage); even small percentages lead to many tokens. C4.En (†) is estimated from the first 50M examples in the corpus.

Figure from Blevins et al. (2022)

Non-English Data

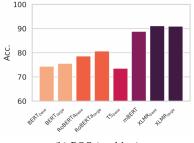
Туре	Book	Wiki	Num. Stories	of Lines in OpenWeb	CCNews	C4
	156	129	99	175	193	169
NE				år ifrån våra m		
112				st är förankrade	e i människors	vilja.
		PENWEB				22
	13	11	15	4	1	22
BiL		e German ." (WIKI)		ls: "Von Silber	über Schwarz	
	2	7	4	2	0	4
Trans.	Ex: Εκείνη δεν μπορούσε να πληρώσει [She couldn't pay.] (BOOKCORPUS)					
	1	28	5	1	0	1
Ent.	Ent. Ex: 2012 Playhouse Presents $\dot{D} \neq \mu \hat{\nu} = \pi \hat{1}$.					
	I	ビソード	1: "The Mi	nor Character"	(C4)	
E.	26	22	55	12	6	3
En	Ex: "Dere's buzzards circlin' ova dem trees." (BOOKCORPUS)					RPUS)
XX	2	3	22	6	0	1
лл	Ex: M	DIXOX	$X \mid O \mid O \mid O = $	A (WIKI)		

Table 1: Results of the qualitative analysis of the non-English lines in various pretraining corpora. Type abbreviations are defined in Section 2.2.

Figure from Blevins et al. (2022)

Experiment: POS Probing

• Train linear classifier to predict POS from the final layer of the encoder

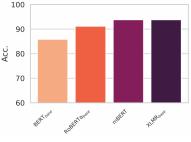


(b) POS (probing)

- T5: more absolute non-English data than RoBERTa, but less in terms of relative percentage (0.78% vs. 0.22%)
- RoBERTa's subword tokenization is more robust than T5 and BERT
- For many high-resource languages: English models perform competitively; T5 outperforms mBERT for German and Portuguese

Experiment: POS Fine-tuning

• Fine-tuning for non-English POS-tagging



(c) POS (finetuned)

- Gap between the mono- and multilingual models becomes smaller
- RoBERTa averages 2.65 points worse than XLM-R, compared to 12.5 points when probing

- mBERT: Cross-Lingual Transfer
- Multilingual Capabilities of Large-Scale LMs
- Monolingual or Multilingual LLMs?
- Low-Resource and Endangered Languages in LLMs
- Summary
- References

- There are \approx 7000 languages in the world
- A majority of languages is not represented in pre-trained LMs
- mBERT, multilingual roBERTa: \approx 100 languages
- GPT-3: 119 languages listed (last position: Cham with 49 words)
- NLLB (No Language Left Behind): translation model for 200 languages

Costa-Jussà et al. (2022)

• Glot500: 511 languages

Imani et al. (2023)

- skewed distribution of languages
- "head" languages: comparatively large languages
- "tail" languages: smaller languages with little to no resources

Under-Represented Languages: Data

- The performance of a language model is dependent on training data in the target language
- Adapt the pretrained multilingual models to low-resource languages?
- Constrained by the amount of monolingual or parallel data available
 → difficult for languages with little or no textual data
- Language documentation: bilingual lexicons or word lists

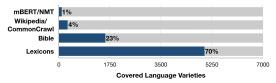


Figure 1: The percentage of the world's \approx 7,000 languages covered by mBERT, monolingual data sources and lexicons.

Learning Endangered Languages with Linguistic Descriptions

• Hire a Linguist!: Learning Endangered Languages with In-Context Linguistic Descriptions Zhang et al. (2024)

Idea: put targeted linguistic knowledge into the prompt

Figure 1: Among the world's ~7000 languages, 95% don't have enough data (>100K sentences) for training LLMs (Bapna et al., 2022), while most have a grammar book (60%) or dictionary (75%) (Nordhoff and Hammarström, 2011), including many endangered languages (Moseley, 2010). Therefore, we utilize these linguistic descriptions to bring LLMs to endangered languages.

Learning Endangered Languages with Linguistic Descriptions

- How does a linguist analyze an utterance in a foreign language?
 ⇒ Dictionary and grammar book!
- Most languages have some linguistic resources
- Linguistic descriptions are different from text collections:
 - Smaller in size
 - Instructional: explicit grammar rules that can be used as instructions for both LLMs and humans
- Dictionary and or grammar book: too large for the prompt context ⇒ exploit available linguistic resources to handle languages unseen in pre-training

(1) Morphological Analysis: Source Sentence \rightarrow Morphemes - (existing) finite-state morphological analyzers

(2) Dictionary Mapping: Morphemes \rightarrow Gloss

- language dependent: words vs. stems
- lookup in a dictionary, strategies to handle no/multiple matches (e.g. edit distance)

(3) Incorporating Grammar Knowledge: Gloss \rightarrow Translation and Beyond

- Some word-level grammatical information is already covered in the morpological analysis
- Prompt the LM with grammar knowledge (some pre-processing required)

Incorporating Linguistic Descriptions

Figure 3: LINGOLLM uses a morphological analyzer to transform the source sentence into morphemes, looks up the morphemes in a dictionary to obtain the gloss, and finally feeds both the gloss and a grammar book to an LLM to obtain the result.

Figure from Zhang et al. (2022)

Incorporating Linguistic Descriptions: Experiments

- 8 typologically and geographically diverse endangered or low-resource languages
- 5 tasks: translation from/to English, mathematical reasoning, response selection, word reordering, and keyword-to-text

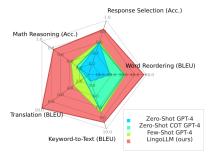


Figure 2: LINGOLLM significantly outperforms GPT-4 on 5 NLP tasks across 8 endangered or low-resource languages.

Figure from Zhang et al. (2022)

- mBERT: Cross-Lingual Transfer
- Multilingual Capabilities of Large-Scale LMs
- Monolingual or Multilingual LLMs?
- Low-Resource and Endangered Languages in LLMs
- Summary
- References

- Cross-Lingual Transfer in mBERT: relevant features
- Large-scale LMs: multilingual capabilities with
- Languages represented in LLMs: English vs. Non-English
- Strategies to model low-resourced languages in LLMs

- mBERT: Cross-Lingual Transfer
- Multilingual Capabilities of Large-Scale LMs
- Monolingual or Multilingual LLMs?
- Low-Resource and Endangered Languages in LLMs
- Summary
- References

References

- Telmo Pires, Eva Schlinger, Dan Garrette (2019): How multilingual is Multilingual BERT? Proceedings of ACL 2019. https://aclanthology.org/P19-1493.pdf
- Steven Cao, Nikita Kitaev, Dan Klein (2020): Multilingual Alignment of Contextual Word Representations. ICLR 2020. https://arxiv.org/abs/2002.03518
- Shijie Wu, Mark Dredze (2019): Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT. EMNPL 2019. https://aclanthology.org/D19-1077/
- Mikel Artetxe, Sebastian Ruder, Dani Yogatama (2020): On the Cross-lingual Transferability of Monolingual Representations Proceedings of ACL 2020. https://aclanthology.org/2020.acl-main.421.pdf
- Rebecca L. Johnson, Giada Pistilli, Natalia Menédez-González, Leslye Denisse Dias Duran, Enrico Panai, Julija Kalpokiene, Donald Jay Bertulfo (2022): The Ghost in the Machine has an American accent: value conflict in GPT-3 https://arxiv.org/abs/2203.07785

References

- Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova (2019): BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Proceedings of NAACL 2019. https://aclanthology.org/N19-1423/
- Yinhan Liu, Myle Ott et al. (2019): *RoBERTa: A Robustly Optimized BERT Pretraining Approach* https://arxiv.org/abs/1907.11692
- Jordi Armengol-Estapé, Ona de Gibert Bonet, Maite Melero (2022): On the Multilingual Capabilities of Very Large-Scale English Language Models. LREC 2022. https://aclanthology.org/2022.lrec-1.327/
- Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, Percy Liang (2016): SQuAD: 100,000+ Questions for Machine Comprehension of Text Proceedings of EMNLP 2016. https://aclanthology.org/D16-1264/
- Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski, Jacopo Staiano (2020): *MLSUM: The Multilingual Summarization Corpus*. EMNLP 2020. https://aclanthology.org/2020.emnlp-main.647/
- Alexis Conneau, Guillaume Lample et al. (2018): *XNLI: Evaluating Cross-lingual Sentence Representations* https://arxiv.org/abs/1809.05053

References

- Terra Blevins, Luke Zettlemoyer (2022). Language Contamination Helps Explains the Cross-lingual Capabilities of English Pretrained Models. EMNLP 2022. https://aclanthology.org/2022.emnlp-main.233/
- NLLB-Team, Marta R. Costa-Jussà et a. (2022): No Language Left Behind: Scaling Human-Centered Machine Translation. https://arxiv.org/abs/2207.04672
- Ayyoob ImaniGooghari et al. (2023): *Glot500: Scaling Multilingual Corpora and Language Models to 500 Languages.* ACL 2023. https://aclanthology.org/2023.acl-long.61/
- Xinyi Wang, Sebastian Ruder, Graham Neubig (2022): Expanding Pretrained Models to Thousands More Languages via Lexicon-based Adaptation. ACL 2022. https://aclanthology.org/2022.acl-long.61.pdf
- Kexun Zhang, Yee Man Choi, Zhenqiao Song, Taiqi He, William Yang Wang, Lei Li (2024): Hire a Linguist!: Learning Endangered Languages with In-Context Linguistic Descriptions. https://arxiv.org/abs/2402.18025