
N-gram Language Models
Speech and Language Processing – Chapter 3

Marion Di Marco

23. 04. 2024

1



N-Gram Language Models

● What could be the next word in the following sentence

Please turn your homework ... in

over

refrigerator

● Language models: assign a probability to upcoming words
or sequences of words

● Assign a probability to sentences:

all of a sudden I notice three guys standing on the sidewalk

on guys all I of notice sidewalk three a sudden standing the

2



What can LMs be used for?

● Choose a better sentence or word

● Correct grammar or spelling

Their are two midterms → There ...
Everything has improve → ... improved

● Speech recognition

I will be back soonish
I will be bassoon dish

● Augmentative and Alternative communication

Communication via eye gaze for people unable to speak physically:
suggest word menu

3



Outline

N-Gram Models

Evaluation

Sampling and Generation

Generalization and Zeros

Smoothing

Kneser-Ney Smoothing

Huge Language Models and Stupid Backoff

Summary

4



Word Probabilities

● P(w ∣h): the probability of the word w given some history h

● P(the ∣its water is so transparent that)

● Relative frequency counts based on a large corpus:

P(the ∣its water is so transparent that) = C(its water is so transparent that the)
C(its water is so transparent that)

● Even a very large corpus cannot contain all possible sentences:

“the Neckar’s water is so transparent that”: zero matches in Google

● Let’s find a better method!

5



Chain Rule of Probability

● P(the) = probability of random variable Xi taking the value “the”

● Sequence of n words: w1 ... wn or w1∶n

● Compute the probability of a word sequence like P(w1,w2, ...,wn)

● Decompose the probability using the chain rule of probability

● Problem: still cannot compute the exact probability of a word given a
long sequence of preceding words P(wn∣w1∶n−1)

6



N-Gram Models

● N-gram model: approximate the history by the last few words

● Bigram model: approximate the probability P(wn∣w1∶n−1) by the
conditional probability of the previous word P(wn∣wn−1)

P(wn∣w1∶n−1) ≈ P(wn∣wn−1)

● Markov assumption: assumption that the probability of a word
depends only on the previous word

● Given the bigram assumption, compute the probability of a sequence

7



Maximum Likelihood Estimation

● Estimate n-gram probabilities with maximum likelihood estimation:

get counts from corpus; normalize such that they lie between 0 and 1

● Bigram probability: count of the bigram C(wn−1wn)

normalize with the sum of all bigrams sharing the first word wn−1:

● Simplify: the sum of all bigrams starting with wn−1 is equal
to the unigram count of wn−1

8



N-gram Probabilities: Example

● Special symbol to denote beginning and end of a sentence: <s>, </s>

● Small example corpus:

● Some probabilities:

9



Maximum Likelihood Estimates

● The maximum likelihood estimate

– of some parameter of a model M from a training set T
– maximizes the likelihood of the training set T given the model M

● Suppose that “bagel” occurs 400 times in a corpus of a million words

● What is the probability that a random word from some other text will
be “bagel”?

● MLE estimate is 400/1,000,000 = .0004

● This may be a bad estimate for some other corpus

– but it is the estimate that makes it most likely that “bagel will occur
400 times in a million word corpus

10



N-gram Models: Example

● Berkeley Restaurant Project Corpus (dialogue system)

● Sample user queries

11



N-gram Models: Example

● Bigram counts from Berkeley Restaurant Project

● Majority of the values are zero

● Samples are chosen to cohere with each other, a random set of words
would be even more sparse

12



N-gram Models: Example

13



N-gram Models: Example

● Some more probabilities

● Compute the probability for “I want English food”

14



N-gram Models

● We can extend the n-gram size to trigrams, 4-grams, 5-grams

● In general, this is an insufficient model of language

language has long-distance dependencies:

The computer which I had just put into the machine room

on the fifth floor crashed

● N-gram models often still work fine

15



Practical Issues

● Probabilities are less than 1
→ the more multiplications, the smaller the product becomes
→ risk of numerical underflow

● Represent language model probabilities as log probabilities

● Adding in log space is equivalent to multiplying in linear space

16



LM Toolkits and Resources

● SRILM: http://www.speech.sri.com/projects/srilm/

● KenLM: https://kheafield.com/code/kenlm/

● All Our N-gram are Belong to You:
https://research.google/blog/all-our-n-gram-are-belong-to-you/

● Google Book N-grams: http://ngrams.googlelabs.com/

● NLTK tools: https://www.nltk.org/book/ch02.html
(Generating Random Text with Bigrams)

17



Outline

N-Gram Models

Evaluation

Sampling and Generation

Generalization and Zeros

Smoothing

Kneser-Ney Smoothing

Huge Language Models and Stupid Backoff

Summary

18



Evaluating LMs

● Extrinsic evaluation
– embed the LM in application → measure improvement
– for example machine translation: build MT systems incorporating the

respective LMs, compare the results
– In practice: often too expensive to train/run big NLP systems

– Sidenote: measuring the quality of a translation (or some other NLP
task) is often not trivial

● Intrinsic evaluation
– measure the model’s quality independent of another application

● Perplexity: standard intrinsic metric for LM performance

19



Training and Test Data

Three distinct data sets

● Training set
– data set to learn parameters for the model
– text corpus to get counts as basis for the n-grams probabilities

● Test set
– held-out data set disjunct from training data
– measure how well the model can handle unknown data
– use test set to measure performance only for the final LM

● Development set
– additional data to measure performance when working on the model

20



Training and Test Data

● The test set should reflect the type of language modeled in the LM

– for example data of medical or chemical domain, hotel booking
– general purpose: wide variety of texts

● “Fit of the model”: the LM that has a tighter fit to the test set
(= assigns a higher probability) is better

● Seeing test data during training: this is bad!

– bias the model to the test set
– artificially high probabilities, inaccurate perplexity

● Test too early on the test set: also bad!

– tune the model to the test set’s characteristics

21



Perplexity

● Perplexity: measures how well a model predicts a sample
– a good model should not be “perplexed” or surprised when

seeing a (valid) document

● Perplexity is the inverse probability of the test set, normalized
by the number of words (“per-word-perplexity”)

● For a test set W = w1w2 ...wN

● Higher probability → lower perplexity

22



Perplexity

● Perplexity for a unigram language model

● Perplexity for a bigram language model

23



Perplexity: Example

● Training corpus for a unigram, bigram and trigram model:
38 million words from Wall Street Journal, 19.979 word vocabulary

● Test corpus: 1.5 million words from Wall Street Journal

● Trigram model is less surprised than the unigram model

● Lower perplexity → better predictor of words in the test set

● (Intrinsic) improvement in perplexity: no guarantee for (extrinsic)
improvement

● Perplexity often correlates with task improvements → convenient
evaluation metric

24



Perplexity as Weighted Average Branching Factor

● Branching factor of a language: number of possible next words

● Assume a language of integer numbers with a vocabulary of 10 digits
(0,1, ... , 9):
branching factor = 10

● Each of the digits occurs with the same probability (P = 1
10)

● Perplexity of a string pf length N:

25



Outline

N-Gram Models

Evaluation

Sampling and Generation

Generalization and Zeros

Smoothing

Kneser-Ney Smoothing

Huge Language Models and Stupid Backoff

Summary

26



Predicting Upcoming Words

● The Shannon Game (1948): How well can we predict the next word?

– one upon a

– for breakfast I ate

– this is a picture of my

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

time 0.2

midnight 0.1

and 0.3

...

yellow 0.002

● Unigram:
REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT

NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO

FURNISHES THE LINE MESSAGE HAD BE THESE.

● Bigram:
THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE

CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS

THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

27



Sampling Words from a Distribution

● Sampling from a distribution: choose a random point according to
their likelihood

● Visualization for unigrams:

– all words cover the probability space between 0 and 1
– intervals in proportion to the relative frequency
– cumulative probabilities in the bottom line

● Choose a random point between 0 and 1: find the word

● Continue until you encounter </s>

● Can also be applied to bigrams

28



Sampling

● Sampling from a language model: generate sentences according to the
likelihood as defined by the model

● Intuition: a good LM prefers “real” sentences over “word salad”

● Sentences with a higher probability in the model are more likely

● There are many more sampling methods
→ often avoid words from the very tail of the distribution

(for example: temperature sampling, tok-k sampling, top-p sampling)

Figure from https://lena-voita.github.io/nlp course/language modeling.html#generation strategies sampling

29



Outline

N-Gram Models

Evaluation

Sampling and Generation

Generalization and Zeros

Smoothing

Kneser-Ney Smoothing

Huge Language Models and Stupid Backoff

Summary

30



Context and Coherence

● More context is better: higher-order n-grams can capture more context

● More context → more coherent generated sentences

● Example: randomly generated sentences from Shakespeare

31



Context Size and Coherence

● Unigram: no coherent relation between words

● Bigram: some local coherence

● 3-gram and 4-gram: starts to ressemble Shakespeare

● The sequence It cannot be but so are directly from King John

● Comparatively small corpus: N = 884,647 and V = 29,066

– n-gram probability matrices are very sparse
– 300,000 out of V2 =844 million possible bigrams
– 99.96% of the possible bigrams were never seen (= zero entry)

– Once the 3- gram It cannot be is chosen: only seven possibilities for the
next word: (but, I, that, thus, this, and the period)

32



Training Data

● Choosing the training data: use a training corpus that has a similar
genre to the task

● Can you guess the original data?

– They also point to ninety nine point six billion dollars from

two hundred four oh six three percent of the rates of interest

stores as Mexico and gram Brazil on market conditions

– ‘‘You are uniformly charming!’’ cried he, with a smile of

associating and now and then I bowed and they perceived a chaise

and four to wish for.

● N-grams work well if the training and test corpus are similar

● Even with a good training corpus: surprisal in the test set

● Thus: train robust models that are able to generalize

33



Data Sparsity

● Even in a large corpus: data sparsity problems

● For sufficiently observed n-grams: good estimate of probability

● But: some valid sequences do not occur in the corpus

● Example from Wall Street Journal corpus (40 million words)

denied the allegations 5
denied the speculation 2
denied the rumors 1
denied the report 1
denied the offer –
denied the loan –

● Thus, the LM will estimate that P(offer ∣denied the) = 0
– under-estimate probability of valid sequences → harmful for task
– if one word has probability of zero, test set has a probability of zero:

perplexity is undefined

34



Unknown Words

● Unknown words or out-of-vocabulary words (OOV) :
word in the test data that does not occur in the training data

● OOV-rate: percentage of OOVs in the test set

● Create an open vocabulary system: map unknown words to <UNK>

– Choose a fixed vocabulary
– Convert OOVs in the training data to the special token <UNK>

– Estimate probabilities for <UNK> just as for regular words

● Closed vocabulary system: there are no unknown words
Most modern LMs: sub-word tokenization to segment words into smaller

pieces (for example BPE)

35



Outline

N-Gram Models

Evaluation

Sampling and Generation

Generalization and Zeros

Smoothing

Kneser-Ney Smoothing

Huge Language Models and Stupid Backoff

Summary

36



Smoothing – Intuition

● Words that are in the vocabulary, but appear in an unseen context?

P(w ∣ denied the)
allegations 5
speculations 2
rumors 1
reports 1

allegations

speculations

rumors

reports

offer

loan

...

● Smoothing or discounting: “steal” probability mass from more
frequent events and give them to unseen events

P(w ∣ denied the)
allegations 4.5
speculations 1.5
rumors 0.5
reports 0.5
other 2

allegations

speculations

rumors

reports

offer

loan

...

37



Laplace Smoothing

● Laplace smoothing or add-one smoothing

● Add one to all n-gram counts before normalizing into probabilities

● MLE estimate:

● For add-one smoothed bigram counts: augment the unigram count by
the number of word types in the vocabulary V

● Add-1 estimate:

38



Laplace Smoothing: Berkeley Restaurant Corpus

39



Laplace Smoothing: Berkeley Restaurant Corpus

Reconstruct the count matrix:

40



Laplace Smoothing: Berkeley Restaurant Corpus

● Add-1 smoothing can make a very big change to the counts

● For example, C(want to) changed from 608 to 238 and C(Chinese
food) from 82 to 8.2

● Discount d: the ratio between new and old counts

● Sharp change in counts and probabilities: too much probability mass is
moved to unseen events

● Add-1 is not used for n-grams, but for text classification or domains
where the number of zeros is smaller

● Variant: add-k smoothing with a fractional count k < 1 to move less
probability mass away from seen events.

– requires a method to choose k (optimize on devset)
– still doesn’t work well for LMs

41



Backoff and Interpolation

● So far: target the problem of zero frequency n-grams

● Use less context to help the model generalize for contexts
it has no knowledge about:

to compute P(wn ∣ wn−2 wn−1): if there are no examples of the trigram

wn−2 wn−1 wn, use the bigram probability P(wn ∣ wn−1) instead

● Backoff: use a lower-order n-gram if there is no evidence for a
higher-order n-gram

● Interpolation: mix estimates from all n-gram orders using weights
to comine them

(Interpolation tends to be better)

42



Linear Interpolation

● Simple linear interpolation: combine unigram, bigram and trigram
probabilities, each weighted with a λ

● The λi must sum to 1 → weighted average

● Linear interpolation with context-conditioned weights

43



Linear Interpolation

● The λ values are learned from a held out corpus
additional training data to learn hyperparameters λ

● Choose λs to maximize the probability of held-out data

– fix the n-gram probabilities on the training data
– search for λs that give the highest probability of the held-out set

● Various ways to find the optimal set of λs, for example the EM
(expectation-maximization) algorithm

44



Katz Backoff

● Backoff: if an n-gram has zero counts, approximate with (n-1)-gram

● Discount higher-order n-grams to save some probability mass for
lower-order n-grams:
just replacing an n-gram which has zero probability with a lower order n-gram

→ adding to the total probability mass

● Katz backoff: backoff with discounting

● Discounted probability P∗

● α to distribute the probability mass to the lower-order n-grams

45



Outline

N-Gram Models

Evaluation

Sampling and Generation

Generalization and Zeros

Smoothing

Kneser-Ney Smoothing

Huge Language Models and Stupid Backoff

Summary

46



Absolute Discounting

● Consider an n-gram with count=4: How much should we discount?

● Church and Gale (1991): look at the count of n-grams with count=4
in held-out data

● Compute all bigrams from 22 million words, then check the counts of
the bigrams in another 22 million words

● On average: a bigram with count=4 in C1 occurred 3.32 times in C2

47



Absolute Discounting

● For counts > 1 the bigram counts in the held-out set can be estimated
by subtracting 0.75 from the training set

● Absolute discounting: subtract a fixed discount d from each count

– good estimates for high counts → small discount won’t hurt
– smaller counts: we don’t necessarily trust the estimate

● Interpolated absolute discounting for bigrams:

● First term: discounted bigram
Second term: unigram with an interpolation weight λ

● Given Figure 3.9: set d=0.75, maybe d=0.5 for bigrams with count=1

(There are more complex ways to determine d)

48



Kneser-Ney Discounting

● More sophisticated way to handle lower-order unigram distribution

● Assume we are interpolating a bigram and unigram model

I can’t see without my reading

● glasses seems much more likely than Francisco
→ a unigram model should prefer glasses

● San Francisco is very frequent
→ Francisco is more common than glasses

● Francisco is frequent, but mainly occurs after San

glasses has a wider distribution

● Words appearing in more contexts → more likely to appear in a new
context

49



Kneser-Ney Discounting

● Unigram model PCONTINUATION : how likely is w as a novel continuation?

● Base the estimation of PCONTINUATION on the number of different
contexts w has appeared in (= number of bigram types it completes)

● Continuation probability associated with each unigram: proportional to
the number of bigrams it completes

PCONTINUATION(wi)∝ ∣{wi−1 ∶ c(wi−1,wi) > 0}∣

● Normalize by the total number of bigram types

PCONTINUATION(wi) =
∣{wi−1∶c(wi−1,wi)>0}∣
∣{wj−1∶c(wj−1,wj)>0}∣

● Frequent words appearing in very few contexts: low continuation
probability

50



Interpolated Kneser-Ney

● The final equation for Interpolated Kneser-Ney smoothing for
bigrams

● λ: normalizing constant

● The first term: the normalized discount

● The second term: the number of word types that can follow wi−1

(= number of word types we discounted)

51



Interpolated Kneser-Ney

● Kneser-Ney evolved from absolute discounting interpolation
(higher-order and lower-order n-grams, with some probability mass

reallocated to unigrams)

● Kneser-Ney addresses the unigram part:

– absolute discounting: simple unigram model
– Kneser-Ney: continuation probability associated with each unigram

● Modified Kneser-Ney: instead of a fixed discount d , use different
discounts d1, d2, d3+ for n-grams with counts of 1, 2 and3 or more

52



Outline

N-Gram Models

Evaluation

Sampling and Generation

Generalization and Zeros

Smoothing

Kneser-Ney Smoothing

Huge Language Models and Stupid Backoff

Summary

53



Huge LMs

● Using Web data or other enormous corpora → extremely large LMs

– Web 1 Trillion 5-gram corpus released by Google: unigrams – 5-grams
from 1,024,908,267,229 words (English)

– Google Books Ngrams corpora: n-grams from 800 million tokens
(Chinese, English, French, German, Hebrew, Italian, Russian, Spanish)

● Pruning

– only store n-grams with count > threshold (→ Google corpus)
– remove singletons of higher-order n-grams
– entropy-based pruning to remove less important n-grams

● Efficiency

– efficient data structures like tries
– store words as indexes, not strings

54



Stupid Backoff

● With very large LMs, a simple smoothing strategy may be sufficient

● Stupid backoff: no probability distribution

– no discounting of higher-order n-grams

– backoff to lower-order n-gram if higher-order n-gram has a zero count

– lower-order n-grams are weighted by a fixed weight

55



Outline

N-Gram Models

Evaluation

Sampling and Generation

Generalization and Zeros

Smoothing

Kneser-Ney Smoothing

Huge Language Models and Stupid Backoff

Summary

56



Summary

● LMs: assign a probability to sentences or word sequences, and predict
a word from preceding words

● n-grams are Markov models: estimate words from a fixed window of
previous words

● n-gram probabilities: estimated from normalized counts in a corpus
(maximum likelihood estimate)

● Evaluation

– extrinsic evaluation on a task
– intrinsic evaluation using perplexity

● Smoothing: more sophisticated way to estimate probabilities of
n-grams

– rely on lower-order n-grams through backoff or interpolation
– require discounting to create a probability distribution

57



References

Speech and Language Processing
Dan Jurafsky and James H. Martin

Chapter 3: N-gram Language Models
https://web.stanford.edu/∼jurafsky/slp3/3.pdf

58


	N-Gram Models
	Evaluation
	Sampling and Generation
	Generalization and Zeros
	Smoothing
	Kneser-Ney Smoothing
	Huge Language Models and Stupid Backoff
	Summary

