Large Language Models - Seminar Introduction: Linguistic Concepts for NLP

Marion Di Marco

16. April 2024

Introduction and Overview

• Linguistic concepts relevant for natural language processing

- Words: what is a word?
- Sentences and part of speech
- Syntax and parse trees
- Morphology: vocabulary and subword segmentation

The slides are partially based on Chapter 2 "Words, Sentences and Corpora" from the book "Statistical Machine Translation" (Philipp Koehn)

What are Words?

Parts of Speech

Sentences and Syntax

Morphology

Large Language Models

Words

• Word: basic atomic unit of meaning

- Adapt the meaning based on the context
 - ... their parents' house ...
 - ... the White House ...
- Almost all uses of *house* are connected to the basic unit of meaning
- Smaller units such as syllables or sounds (*hou* or *s*) do not evoke the mental image of *house*

- Notion of words seems straightforward for English \rightarrow space separated
- Some writing systems do not clearly mark words as unique units for example, Chinese is written without spaces between the words
- Complex words and compounding: some words appear to be one word, but consist of several parts
 - English: homework, tumbledown, blackboard
 - German: Apfelkuchen (apple cake), feuerlöscherrot (fire extinguisher red) Rinderkennzeichnungsfleischetikettierungsüberwachungsaufgabenübertragungsgesetz¹
 - Finnish: istahtaisinkohankaan (I wonder if I should sit down for a while after all)²

https://en.wikipedia.org/wiki/Finnish_language

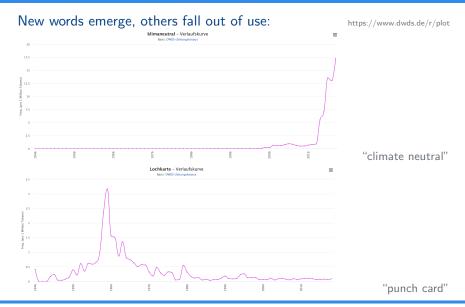
¹https://www.duden.de/sprachwissen/sprachratgeber/Die-langsten-Worter-im-Dudenkorpus

Tokenization

- For NLP tasks
 - consistent representation of the data as a sequence of tokens
 - keep the vocabulary as small as possible
- Do not blow up the vocabulary with different forms such as *house* and *house*, and *house*! and *"house"*
- Tokenization: breaking raw text into words assuming words as they appear on the surface level as tokens
- Languages with similar concepts of words than English: essentially splitting off punctuation
- Writing systems without spaces or languages with highly complex words: segmentation is more challenging

Tokenization

- Example for English tokenization
- What about
 - ... possessive markers (Tom's) and merged words (doesn't)?
 - ... abbreviations (Abk.) or similar items containing a dot?
 - … hyphenation (co-operate)?
- Possible further normalization: lowercasing

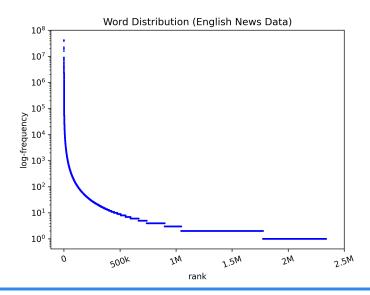

Raw text	My son's friend, however, plays a high-risk game.
Tokenized	My son 's friend , however , plays a high $@-@$ risk game .

Lowercased my son 's friend , however , plays a high @-@ risk game .

Figure 2.1 Tokenization and lowercasing: Basic data processing steps for machine translation. Besides splitting off punctuation, hyphenated and merged words may be broken up.

Figure from "Statistical Machine Translation"

What are the Words of a Language?


Corpora and Word Distribution

- The vocabulary of a language is fluid
- In practice: text corpus with a fixed set of words
- Continually update with new data \rightarrow larger corpora

• English news data (33M sentences):

freq	word	freq	word	freq	word
42380661	,	17313	timing	3	yoghurt-coated
40887715	the	17304	filming	3	yesteray
38696981		17303	overcome	3	yellow-beaked
22720213	to	17300	magic	3	worrried
19785952	and	17299	innocent	3	womansplain
19644063	of	17296	admit		
19025360	а	17278	patterns	2	ruminococcaceae
15930678	in	17275	rolling		
9164833	's	17269	formally	1	north-northwestern

Corpora and Word Distribution

What are Words?

Parts of Speech

Sentences and Syntax

Morphology

Large Language Models

Parts of Speech and POS tagging

- Parts of speech: grammatical categories or word classes
- Words within the same word class: similar syntactic behaviour and similar grammatical properties
- Part-of-Speech tagging: labeling the POS tags of words in a text
- Well-established strategy:
 - annotate a large amount of text with POS-tags
 - train a tagger on the annotated data
- No trivial task:
 - words that appear the same can occur in different functions, for example to house (VERB) ↔ the house (NOUN)
 - classify previously unseen words

POS Tagging – Example

word	POS
When	WRB
the	DT
space	NN
shuttle	NN
was	VBD
approved	VBN
in	IN
1972	CD
,	,
NASA	NP
officials	NNS
predicted	VBD
that	IN
they	PP
would	MD
launch	VB
one	CD
every	DT
week	NN
or	CC
two	CD
	SENT

Function Words and Content Words

Content words

- Words with lexical content
 - Nouns \rightarrow refer to entities
 - Verbs \rightarrow actions
 - Adjectives \rightarrow attributes of entities
 - Adverbs \rightarrow attributes of actions
- Open-class words

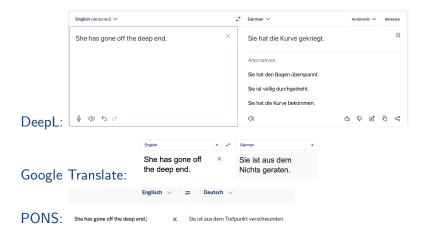
Function words

- · Words with little to no lexical meaning
- Provide the structure of a sentence: express grammatical relations between content words
- For example prepositions, pronouns, articles, auxiliary verbs, ...
- Closed-class words

What does that mean for NLP applications?

- Content words:
 - continually evolving non-finite set of words
 - many existing words, with new words being introduced
 - depending on the language: further inflectional variants $\ \ \rightarrow \ morphology$
- Need for large text corpora to span many topics and domains for sufficient coverage

• Function words:


- comparatively small set of words
- make up a large part of the overall word count
- their interpretation is often context-dependent (for example, *that* as a determiner or relative pronoun)
- depending in the language: different realization of linguistic concepts

 \rightarrow morphology, sentence structure

- The idea of words as basic units of meaning does not always hold
- For example: idiomatic expressions she's gone off the deep end er hat nicht mehr alle Tassen im Schrank
- All words in the phrases have a distinct meaning that is not related to the meaning of the phrase (*crazy/verrückt*)
- Context: need to consider the entire phrase to derive the meaning
- Challenging for many NLP tasks
- For the sake of simplicity: assume words as the basic units of meaning

Non-compositional Phrases

• On a side note: to go off the deep end seems to be difficult to translate

What are Words?

Parts of Speech

Sentences and Syntax

Morphology

Large Language Models

Sentences

- Words \rightarrow atomic units of meaning
- Sentence \rightarrow combination of words following the rules of a language

(1) Jane bought the house

- \rightarrow the **verb** *bought* is the central element
- → the verb has two arguments: subject Jane and object house

(2) Jane gave Alice a cookie.

- → gave/give has three arguments: subject Jane and direct object cookie and indirect object Alice
- Syntax: studies how to combine words into larger units such as phrases or sentences

- Different grammar formalism to express the structure of a sentence (for example, phrase structure grammar, dependency structures, lexical functional grammar)
- Parse trees: illustrate the grammatical structure of a sentence
- Dependency structures: display relationship between words
 - one word is the head of the sentence, dependent on a notional ROOT
 - all other words are dependent on another word

Figure from https://universaldependencies.org/u/overview/syntax.html

Syntax across Languages

• Linguistic concepts and processes are realized differently

• Analytic languages

- syntactic information is mainly expressed by means of function words (e.g., prepositions, modifiers)
- syntactic functions (subject, object) are assigned via word order
- For example English, Norwegian, Danish

• Synthetic languages

- grammatical information is synthesized into one word by means of (inflectional) morphology (e.g. grammatical case instead of prepositions)
- relatively free word order
- For example Slavic languages, German, Finnish, Turkish
- Often no clear distinction: languages can have features of both groups

Universal Dependency Treebank

- UDP: developing cross-linguistically consistent treebank annotation for many languages
- Tree structures for English, Bulgarian, Czech and Swedish

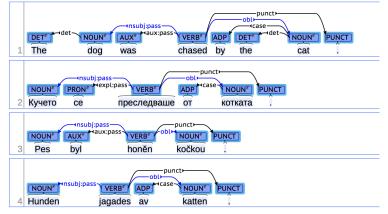



Figure from https://universaldependencies.org/introduction.html

Linguistic Structure in Large Language Models

- Language models perform very well at many language tasks
- To what extent can these abilities be attributed to generalizable linguistic understanding vs. surface-level lexical patterns?
- Can we obtain linguistic structure from LMs?

Prompting Language Models for Linguistic Structure. Blevins et al. (2023)

Figure 1: Sequence tagging via structured prompting. Each predicted label is appended to the context along with the next word to iteratively tag the full sentence. What are Words?

Parts of Speech

Sentences and Syntax

Morphology

Large Language Models

- Morphology: studies the internal structure and composition of words
- Inflectional morphology: addition of a morpheme, usually a suffix, to express grammatical categories
- Does not change the core lexical meaning of the words
- Some examples:
 - number: $house \rightarrow houses$
 - tense: machen \rightarrow machte
- Derivational morphology: forming a new word from existing words
- This changes the lexical interpretation of the word
- Some examples:
 - Addition of particle: ab + machen → abmachen ('off make': remove)
 - Adjectivization: $fold_{verb} + -able \rightarrow foldable_{adj}$

- Morphologically poor languages: express relationships between words mostly with function words
- Morphologically rich languages: morphological variations
 - verbal inflection
 - nominal inflection
 - word formation processes: for example compounding
 Apfel + Kuchen → Apfelkuchen (apple cake)
- More morphological variation: larger vocabulary of surface forms

Example: Czech Nominal Inflection

• Inflection paradigm for the Czech adjective mladý (young)

		Masculine animate	Masculine inanimate	Feminine	Neuter
	Nominative	mla	ad ý	mlad á	mladé
	Genitive	mlac	ého	mladé	mlad ého
	Dative	mlad	lému	mladé	mlad ému
Sg.	Accusative	mlad ého	mlad ý	mlad ou	mladé
	Vocative	mla	mladý!		mlad é !
	Locative	mlad ém		mladé	mlad ém
	Instrumental	mlad ým		mlad ou	mlad ým
	Nominative	mladí mladé ml		mlad á	
	Genitive	mlad ých			
	Dative	mlad ým			
PI.	Accusative	mladé		mlad á	
	Vocative	mladí!	mla	dé!	mlad á !
	Locative	mladých			
	Instrumental	al mladými			

Figure from https://en.wikipedia.org/wiki/Czech_declension

Example: French Verbal Inflection

Inflection paradigm for the French verb voir (to see)

INDICATIF							
Présent		Imparfait		Passé simple		Futur simple	
je	vois	je	voyais	je	vis	je	verrai
tu	vois	tu	voyais	tu	vis	tu	verras
il/elle/on	voit	il/elle/on	voyait	il/elle/on	vit	il/elle/on	verra
nous	voyons	nous	voyions	nous	vimes	nous	verrons
vous	voyez	vous	voyiez	vous	vîtes	vous	verrez
ils/elles	voient	ils/elles	voyaient	ils/elles	virent	ils/elles	verront
				6010010101010			

SUBJONCTIF						CONDITIONNEL	
Présent			Imparfait			Présent	
que	je	voie	que	je	visse	je	verrais
que	tu	voies	que	tu	visses	tu	verrais
qu'	il/elle/on	voie	qu'	il/elle/on	vít	il/elle/on	verrait
que	nous	voyions	que	nous	vissions	nous	verrions
que	vous	voyiez	que	vous	vissiez	vous	verriez
qu'	ils/elles	voient	qu'	ils/elles	vissent	ils/elles	verraient

FORMES IMPERSONNELLES				
Infinitif	Participe présent	Participe passé		
voir	voyant	vu(e)		

- In addition: composed tenses
- In contrast: (to) see, sees, saw, seen, seeing

Overview from https://en.pons.com/verb-tables/french/voir

• Agglutination: process of forming new words by concatenating morphemes that correspond to syntactic features

Turkish	English
duy(-mak)	(to) sense
duygu	sensation
duygusal	sensitive
duygusallaş(-mak)	(to) become sensitive
duygusallaştırıl(-mak)	(to) be made sensitive
duygusallaştırılmış	the one who has been made sensitive
duygusallaştırılamamış	the one who could not have been made sensitive
duygusallaştırılamamışlardan	from the ones who could not have been made sensitive

Overview from Ataman et al. (2017)

Vocabulary in Large Language Models

- Large vocabulary \rightarrow data sparsity
 - $\rightarrow\,$ some forms only occur infrequently or even not at all
- Generally challenging for NLP applications
- Interpretation of a seen form:
 - $\rightarrow\,$ what does the particular realization of a word mean?
- Generation of an appropriate form:
 - $\rightarrow\,$ what should a form look like in the given context?
- Just add more training data?
 - more data certainly helps ...
 - ... but still puts morphologically rich languages at a disadvantage
- Ideally: generalization

Vocabulary in Large Language Models

- Language models are trained on huge amounts of data, often on multilingual training data
- For practical reasons: vocabulary needs to be capped
- Pre-trained language models typically rely on sub-word units
 - handle unknown words
 - for better efficiency due to reduced
- Example from ChatGPT:

Many words map to one token, but some don't: indivisible.

The Nile crocodile (Crocodylus niloticus) is a large crocodilian native to freshwater habitats in Africa. It is widely distributed in sub -Saharan Africa.

Das Nilk<mark>rok</mark>odil ist das größte Krokodil Afrikas und erreicht normaler weise Längen von 3 bis 4 m.

Vocabulary and Sub-word Units

• Subword units are often based on WordPiece or BPE

```
Sennrich et al. (2016)
```

- Frequency-based compression algorithms:
 - start with small vocabulary (character-level)
 - iteratively merge the most common tuples until desired vocabulary size is reached
 - keep frequent words intact, segment less frequent ones
- Example: playing \rightarrow play ##ing
- Is this always a good idea?
- What about languages with more complex morphology?

Vocabulary and Sub-word Units

- Segmentation based on BPE or WordPiece is not linguistically guided
- Resulting sub-words are not always meaningful linguistic units
- mitternacht|s|blau(e|en|s)
 the/a midnight blue car(s)

das m<mark>ittern</mark>achtsblaue Auto. die mittern<mark>achts</mark>blauen Autos. ein mitternachtsblaues Auto.

- Generalization issues:
 - the inflected word part blau (blue) is represented differently
 - the split does not adhere to morpheme boundaries/inflectional suffix
- Non-concatenative morphological processes cannot be captured
 - for example Umlautung: $Apfel_{Sg} \rightarrow \tilde{A}pfel_{Pl} (apple(s))$

- English is an analytic language without rich morphology; segmentation with WordPiece or BPE functions reasonably well
- Frequency-based segmentation is not optimal for morphologically rich languages (e.g. Arabic, Hebrew, Finnish, Turkish, ...)

Klein and Tsarfaty (2020)

- Studies for several languages: linguistically-guided segmentation in combination with frequency-based segmentation is better
 - Language modeling, machine translation

What are Words?

Parts of Speech

Sentences and Syntax

Morphology

Large Language Models

- Large Language Models: state-of-the-art performance on many tasks
- Typically trained without explicit linguistic information, just large quantities of (multilingual) text
- How do LMs understand language?
 - Linguistic structure: syntax, morphology
 - Cross-lingual competence of LMs
 - World knowledge
 - Reasoning and problem solving
- Languages:
 - Most LLMs are English-centered
 - What about low-resourced languages?

- Lectures in the first part of the seminar: technical background of LMs
- Paper presentations in the second part of the seminar: discussing different topics in current papers
- For next week: please read Jurafsky and Martin, chapter 3: n-grams https://alexfraser.github.io

- Rico Sennrich, Barry Haddow, Alexandra Birch (2016): Neural Machine Translation of Rare Words with Subword Units In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.
- Stav Klein, Reut Tsarfaty (2020): Getting the ##life out of living: How Adequate Are Word-Pieces for Modelling Complex Morphology? In Proceedings of SIGMORPHON.
- Terra Blevins, Hila Gonen, Luke Zettlemoyer (2023): *Prompting Language Models for Linguistic Structure*. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics.